Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurochem ; 162(3): 245-261, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35713360

RESUMO

Human DJ-1 is a cytoprotective protein whose absence causes Parkinson's disease and is also associated with other diseases. DJ-1 has an established role as a redox-regulated protein that defends against oxidative stress and mitochondrial dysfunction. Multiple studies have suggested that DJ-1 is also a protein/nucleic acid deglycase that plays a key role in the repair of glycation damage caused by methylglyoxal (MG), a reactive α-keto aldehyde formed by central metabolism. Contradictory reports suggest that DJ-1 is a glyoxalase but not a deglycase and does not play a major role in glycation defense. Resolving this issue is important for understanding how DJ-1 protects cells against insults that can cause disease. We find that DJ-1 reduces levels of reversible adducts of MG with guanine and cysteine in vitro. The steady-state kinetics of DJ-1 acting on reversible hemithioacetal substrates are fitted adequately with a computational kinetic model that requires only a DJ-1 glyoxalase activity, supporting the conclusion that deglycation is an apparent rather than a true activity of DJ-1. Sensitive and quantitative isotope-dilution mass spectrometry shows that DJ-1 modestly reduces the levels of some irreversible guanine and lysine glycation products in primary and cultured neuronal cell lines and whole mouse brain, consistent with a small but measurable effect on total neuronal glycation burden. However, DJ-1 does not improve cultured cell viability in exogenous MG. In total, our results suggest that DJ-1 is not a deglycase and has only a minor role in protecting neurons against methylglyoxal toxicity.


Assuntos
Estresse Oxidativo , Aldeído Pirúvico , Animais , Glicosilação , Guanina , Humanos , Camundongos , Neurônios/metabolismo , Proteína Desglicase DJ-1/metabolismo , Aldeído Pirúvico/química , Aldeído Pirúvico/metabolismo
2.
Stem Cell Res ; 55: 102506, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34419745

RESUMO

Mutations in the oncogene PARK7, which codes for DJ-1, have been associated with early-onset autosomal recessive Parkinson's disease (PD); however, the exact role of DJ-1 in PD remains elusive. Fibroblasts from a PD patient with a uniparental disomy, 1 bp deletion in PARK7 were reprogrammed into the induced pluripotent stem cell (iPSC) line: NIHTVBi015-A. For control purposes, CRISPR-Cas9 editing was used to mimic the mutation in the Gibco Human Episomal iPSC line: TMOi001-A is the control line (A18945) and TMOi001-A-3 is the control-edited line (2B10). All 3 lines exhibit normal karyotyping and expression of pluripotent markers: OCT4, SOX2, and NANOG. These lines provide a translational environment to study DJ-1-related function in PD.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doença de Parkinson , Fibroblastos , Humanos , Mutação/genética , Doença de Parkinson/genética , Proteína Desglicase DJ-1
3.
Mol Neurodegener ; 16(1): 17, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33741046

RESUMO

The most common mutation in the Leucine-rich repeat kinase 2 gene (LRRK2), G2019S, causes familial Parkinson's Disease (PD) and renders the encoded protein kinase hyperactive. While targeting LRRK2 activity is currently being tested in clinical trials as a therapeutic avenue for PD, to date, the molecular effects of chronic LRRK2 inhibition have not yet been examined in vivo. We evaluated the utility of newly available phospho-antibodies for Rab substrates and LRRK2 autophosphorylation to examine the pharmacodynamic response to treatment with the potent and specific LRRK2 inhibitor, MLi-2, in brain and peripheral tissue in G2019S LRRK2 knock-in mice. We report higher sensitivity of LRRK2 autophosphorylation to MLi-2 treatment and slower recovery in washout conditions compared to Rab GTPases phosphorylation, and we identify pS106 Rab12 as a robust readout of downstream LRRK2 activity across tissues. The downstream effects of long-term chronic LRRK2 inhibition in vivo were evaluated in G2019S LRRK2 knock-in mice by phospho- and total proteomic analyses following an in-diet administration of MLi-2 for 10 weeks. We observed significant alterations in endolysosomal and trafficking pathways in the kidney that were sensitive to MLi-2 treatment and were validated biochemically. Furthermore, a subtle but distinct biochemical signature affecting mitochondrial proteins was observed in brain tissue in the same animals that, again, was reverted by kinase inhibition. Proteomic analysis in the lung did not detect any major pathway of dysregulation that would be indicative of pulmonary impairment. This is the first study to examine the molecular underpinnings of chronic LRRK2 inhibition in a preclinical in vivo PD model and highlights cellular processes that may be influenced by therapeutic strategies aimed at restoring LRRK2 physiological activity in PD patients.


Assuntos
Endossomos/efeitos dos fármacos , Indazóis/farmacologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/antagonistas & inibidores , Lisossomos/efeitos dos fármacos , Doença de Parkinson/enzimologia , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Avaliação Pré-Clínica de Medicamentos , Endossomos/fisiologia , Mutação com Ganho de Função , Técnicas de Introdução de Genes , Humanos , Rim/efeitos dos fármacos , Rim/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Lisossomos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Mitocondriais/metabolismo , Especificidade de Órgãos , Fosforilação/efeitos dos fármacos , Mutação Puntual , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteoma/efeitos dos fármacos , Distribuição Aleatória , Proteínas rab de Ligação ao GTP/metabolismo
4.
J Parkinsons Dis ; 11(2): 569-584, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33523017

RESUMO

BACKGROUND: Coding mutations in the LRRK2 gene, encoding for a large protein kinase, have been shown to cause familial Parkinson's disease (PD). The immediate biological consequence of LRRK2 mutations is to increase kinase activity, suggesting that inhibition of this enzyme might be useful therapeutically to slow disease progression. Genome-wide association studies have identified the chromosomal loci around LRRK2 and one of its proposed substrates, RAB29, as contributors towards the lifetime risk of sporadic PD. OBJECTIVE: Considering the evidence for interactions between LRRK2 and RAB29 on the genetic and protein levels, we set out to determine whether there are any consequences on brain function with aging after deletion of both genes. METHODS: We generated a double knockout mouse model and performed a battery of motor and non-motor behavioral tests. We then investigated postmortem assays to determine the presence of PD-like pathology, including nigral dopamine cell count, astrogliosis, microgliosis, and striatal monoamine content. RESULTS: Behaviorally, we noted only that 18-24-month Rab29-/- and double (Lrrk2-/-/Rab29-/-) knockout mice had diminished locomotor behavior in open field compared to wildtype mice. However, no genotype differences were seen in the outcomes that represented PD-like pathology. CONCLUSION: These results suggest that depletion of both LRRK2 and RAB29 is tolerated, at least in mice, and support that this pathway might be able to be safely targeted for therapeutics in humans.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Doença de Parkinson , Animais , Corpo Estriado/metabolismo , Estudo de Associação Genômica Ampla , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/química , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Camundongos , Camundongos Knockout , Mutação , Doença de Parkinson/genética , Doença de Parkinson/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...